
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 18 December 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 13 HS 23

This exercise sheet is not to be turned in. The solutions will be published at the end of the week, before
Christmas.

Exercise 13.1 Shortest path with negative edge weights (part I).

Let G = (V,E,w) be a graph with edge weights w : E → Z and wmin = mine∈E w(e).

Since Dijkstra’s algorithm must not be used whenever some edge weights are negative (i.e., wmin < 0),
one could come up with the idea of applying a transformation to the edge weight of every edge e ∈ E,
namely w′(e) = w(e)−wmin + 1, such that all weights become positive, and then find a shortest path
P in G by running Dijkstra with these new edge weights w′.

Show that this is not a good idea by providing an example graph G with a weight function w, such
that the above approach finds a path P that is not a shortest path in G (this path P can start from the
vertex of your choice). The example graph should have exactly 5 nodes and not all weights should be
negative.

Exercise 13.2 Shortest path with negative edge weights (part II).

We consider the following graph:

1

2

3

6

5

4

3

5

1
4

4

1

1

-4 5

1

2

2

(a) What is the length of the shortest path from vertex 1 to vertex 6?

(b) Consider Dijkstra’s algorithm (that fails here, because the graph has negative edge weights). Which
path length from vertex 1 to vertex 6 is Dijkstra computing? State the sets S, V \ S immediately
before Dijkstra is making its first error and explain in words what goes wrong.

(c) Which efficient algorithm can be used to compute a shortest path from vertex 1 to vertex 6 in the
given graph? What is the running time of this algorithm in general, expressed in n, the number of
vertices, andm, the number of edges?

(d) On the given graph, execute the algorithm by Floyd andWarshall to find all shortest paths. Express
all entries of the (6× 6× 7)-table as 7 tables of size 6× 6. (It is enough to state the path length in
the entry without the predecessor vertex.) Mark the entries in the table in which one can see that
the graph does not contain a negative cycle.

Exercise 13.3 Invariant and correctness of algorithm (This exercise is from the January 2020
exam).

Given is a weighted directed acyclic graph G = (V,E,w), where V = {1, . . . , n}. The goal is to find
the length of the longest path in G.

Let’s fix some topological ordering ofG and consider the array top[1, . . . , n] such that top[i] is a vertex
that is on the i-th position in the topological ordering.

Consider the following pseudocode:

Algorithm 1 Find-length-of-longest-path(G, top)
L[1], . . . , L[n]← 0, . . . , 0
for i = 1, . . . , n do

v ← top[i]
L[v]← max

(u,v)∈E

{
L[u] + w

(
(u, v)

)}
return max

1≤i≤n
L[i]

Here we assume that maximum over the empty set is 0.

Show that the pseudocode above satisfies the following loop invariant INV(k) for 1 ≤ k ≤ n: After k
iterations of the for-loop, L[top[j]] contains the length of the longest path that ends with top[j] for all
1 ≤ j ≤ k.

Specifically, prove the following 3 assertions:

i) INV(1) holds.

ii) If INV(k) holds, then INV(k + 1) holds (for all 1 ≤ k < n).

iii) INV(n) implies that the algorithm correctly computes the length of the longest path.

State the running time of the algorithm described above in Θ-notation in terms of |V | and |E|. Justify
your answer.

Exercise 13.4 Cheap flights (This exercise is from the January 2020 exam).

Suppose that there are n airports in the country Examistan. Between some of them there are direct
flights. For each airport there exists at least one direct flight from this airport to some other airport.
Totally there arem different direct flights between the airports of Examistan.

2

For each direct flight you know its cost. The cost of each flight is a strictly positive integer.

You can assume that each airport is represented by its number, i.e. the set of airports is {1, . . . , n}.

(a) Model these airports, direct flights and their costs as a directed graph: give a precise description
of the vertices, the edges and the weights of the edges of the graph G = (V,E,w) involved (if
possible, in words and not formal).

In points (b) and (c) you can assume that the directed graph is represented by a data structure that
allows you to traverse the direct predecessors and direct successors of a vertex u in time O(deg−(u))
andO(deg+(u)) respectively, where deg−(u) is the in-degree of vertex u and deg+(u) is the out-degree
of vertex u.

(b) Suppose that you are at the airport S and you want to fill the array d of minimal traveling costs to
each airport. That is, for each airport A, d[A] is a minimal cost that you must pay to travel from S
to A.

Name the most efficient algorithm that was discussed in lectures which solves the corresponding
graph problem. If several such algorithms were described in lectures (with the same running time),
it is enough to name one of them. State the running time of this algorithm in Θ-notation in terms
of n andm.

(c) Now you want to know how many optimal routes there are to airport T . In other words, if cmin is
the minimal cost from S to T then you want to compute the number of routes from S to T of cost
cmin.

Assume that the array d from (b) is already filled. Provide an as efficient as possible dynamic pro-
gramming algorithm that takes as input the graph G from task (a), the array d from point (b) and
the airports S and T , and outputs the number of routes from S to T of minimal cost.

Address the following aspects in your solution and state the running time of your algorithm:

1) Definition of the DP table: What are the dimensions of the tableDP [. . .]? What is the meaning
of each entry?

2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

4) Extracting the solution: How can the final solution be extracted once the table has been filled?

5) Running time: What is the running time of your algorithm? Provide it in Θ-notation in terms
of n andm, and justify your answer.

Hint: Note that the array d is a part of the input, so you don’t need to include the time that is required
to fill this array to the running time here.

Exercise 13.5 Elevator.

Consider the following definitions for a directed graph G = (V,E):

1. The out-degree of a vertex v ∈ V , denoted with degout(v), is the number of edges of E that start
at v, i.e., degout(v) = |{(v, w) ∈ E | w ∈ V }|.

3

2. The in-degree of a vertex v ∈ V , denoted with degin(v), is the number of edges that end at v, i.e.,
degout(v) = |{(u, v) ∈ E | u ∈ V }|.

3. A Eulerian walk is a sequence v1, . . . , vk ∈ V such that k = |E| + 1 and {(vi, vi+1) | 1 ≤ i <
k} = E. Note that this definition implies (vi, vi+1) being different edges for 1 ≤ i < k.

In this exercise, you can use without proof the following result:

Lemma 1. A directed graph G = (V,E) admits a Eulerian walk if, and only if, all of the following
conditions holds:

1. At most one vertex v ∈ V is such that degout(v) = degin(v) + 1;

2. At most one vertex v ∈ V is such that degin(v) = degin(v) + 1;

3. Every vertex that satisfies neither (i) nor (ii) is such that degout(v) = degin(v);

4. The undirected graph G′ obtained by ignoring the direction of edges in G is connected.

(a) Write down the pseudocode of an O(|V | + |E|) time algorithm that takes as input a directed
graph G, and returns true if G has a Eulerian walk, and false otherwise. Justify its correctness
and complexity.

(b) Alice is launching iFahrstuhl™, a start-up developing the next generation of elevators. Assume a
building with n floors indexed from 1 to n and an elevator which has room for a single person. The
elevator receives requests in the form of pairs (i, j) ∈ {1, . . . , n}2 of distinct floors between which
a single person is willing to travel.

Consider the scenariowherem peoplewant to use the elevator. For 1 ≤ t ≤ m, the t-th peoplewant
to go from floor it to floor jt. These requests are given as a finite set S = {(i1, j1), . . . , (im, jm)}.

A finite set S = {(i1, j1), . . . , (im, jm)} of requests is called optimal if the pairs can be ordered
such that all requests can be processed and the elevator is never empty when moving between two
floors (except maybe on its way to fetching the first person).

For example, for n = 5, the set S1 = {(2, 3), (4, 1), (3, 4)} is optimal, since it can ordered as
{(2, 3), (3, 4), (4, 1)}, which means that the elevator can start on floor 2 to fetch person 1, go to
floor 3, drop person 1 and fetch person 3, go to floor 4, drop person 3 and fetch person 2, go to floor
1, drop person 2, and terminate there. However, the set S2 = {(2, 3), (4, 1)} is not optimal, since
there is no way a single elevator can satisfy both requests without moving empty from floor 3 to
floor 4 or floor 1 to floor 2.

Given a set of requests S, Alice’s elevators should be able to decide whether it’s optimal. Model
the problem of detecting optimal sets of requests as a graph problem and provide an algorithm to
solve it. Describe the vertex and edge set, edge weights (if needed), the graph problem you solve,
the algorithm you use, and its complexity. To obtain full points, your algorithm should run in time
O(n+ |S|).

(c) Alice’s startup has installed k single-person elevators in your n-floor building. Unfortunately, not
all elevators can reach all floors. Hence, for each elevator j ∈ {1, . . . , k}, you are given a set
Fj ⊆ {1, . . . , n} of floors it can reach. When you arrive in front of an elevator j, say on floor
f ∈ Fj , you can immediately call it, after which you have to wait until it reaches your floor from its
current position, moving at the constant speed of 1 time unit per floor. When the elevator arrives,
you choose the destination floor f ′ ∈ Fj , and the elevator brings you to this floor at the constant
speed of 0.5 time units per floor (for security reasons, the elevator is slower when it is not empty).

4

The time spent moving between elevators on the same floor, calling the elevator or choosing the
destination floor is negligible, since you are very fast at interacting with elevators.

You are alone in the building at floor 1, with each elevator j being initally located on floor fj . You
would like to go to floor n. What is the minimal amount of time that you have to travel using Alice’s
elevators? If you cannot reach floor n, then output∞.

Model the problem as a graph problem and provide an algorithm to solve it. Describe the vertex
and edge set, edge weights (if needed), the graph problem you solve, the algorithm you use, and
its complexity. To obtain full points, your algorithm should run in time O((n +K) log n), where
K =

∑k
j=1|Fj |2.

(d) Continue the setting of (c). Elevator doors in your building need maintenance, but the people in
your building also need elevators. In your building, there is exactly one elevator door per elevator
and floor, which needs to be functional in order for the elevator to be used from or to this floor. Even
if a door is not functional, the elevator can still be used between all other floors where a functional
door is present. Alice wants to select as many elevator doors as possible to be maintained during
the next working day such that all floors can be reached from each other using the elevators and
the remaining functional doors (those not in maintenance).

Model the problem as a graph problem and provide an algorithm to solve it. Describe the vertex
and edge set, edge weights (if needed), the graph problem you solve, the algorithm you use, and
its complexity. To obtain full points, your algorithm should run in time O((n+K ′) log(n+K ′)),
whereK ′ =

∑p
j=1|Fj |.

Hint: Consider the set of vertices

V = {v1, . . . , vn} ∪ {w1, . . . ,wn} ∪ {elevator1, . . . , elevatorj}

and use subgraphs (“gadgets”) of the form

wi1

wi2

. . .

wiq

vi1

vi2

. . .

viq

elevatorj

0

0

0

1

1

1

where Fj = {i1, . . . , iq}.

5

